浙江大学,发重磅Nature!

2024-03-01 3288

电动汽车和航空用锂离子电池(LIBs)要求能量密度高、充电快和工作温度范围宽,这几乎是不可能的,因为它们要求电解质同时具有高离子电导率、低溶剂化能和低熔点,并形成阴离子衍生的无机界面。


在此,来自的美国布鲁克海文国家实验室的胡恩源、马里兰大学的王春生以及浙江大学(第一单位)的范修林等研究者报告了通过使用低溶剂化能的小尺寸溶剂来设计这种电解质的指南。相关论文以题为“Ligand-channel-enabled ultrafast Li-ion conduction”于2024年02月28日发表在Nature上。


研究发现,理想的电解质需要高盐解离但低Li+输运能垒和高离子电导率但富无机界面相这两种矛盾的性质,这是无法同时实现的。利用配体通道促进机制,研究者设计了一种独特的电解质(1.3 M LiFSI/FAN),具有小的溶剂化鞘和快速溶剂-脱溶能力。在25℃和−70℃条件下,FAN基电解质的离子电导率分别为40.3 mS cm−1和11.9 mS cm−1。实现了快速电荷转移动力学,促进了导电富LiF–LixN SEI的形成,克服了石墨在超快充电和超低温条件下的迟滞动力学。


研究者采用FAN电解液的||NMC811石墨全电池在6C时具有3000次循环寿命,在- 80℃充放电时具有109.7 mAh g−1的高可逆容量。实用1.2 Ah石墨||NMC811袋式电池采用FAN电解液,在−50°C时可逆容量为0.73 Ah(−65°C时可逆容量为0.62 Ah),循环150次后无容量衰减。


这项工作揭示了离子在媒介和结构机制之间的输运过程。配体通道促进传导机制为在极端条件下运行的高能电池铺平了道路。


论文链接:

https://www.nature.com/articles/s41586-024-07045-4


扫码关注艾思科蓝订阅号 回复“0”即可领取该资料

去登录