天津大学,Nature Energy!

2025-06-11 3915

艾思科蓝官网-版头.gif


640 (3).png

第一作者:Ruguang Wang, Yuting Yang, Jiaxin Guo

通讯作者:Tao Ling

通讯单位:天津大学


研究要点

本文通过将Brønsted酸氧化物(MoO3−x)引入质子交换膜(PEM)电解槽阴极催化剂层,构建了强酸性微环境,显著提升了电解槽在非纯水(如自来水)中的稳定性和性能。该设计使电解槽在1.0 A cm−2电流密度下稳定运行超过3,000小时,性能媲美传统纯水电解系统。


研究背景

传统PEM电解槽依赖超纯水(18 MΩ cm)作为原料,以避免阳离子杂质(如Na+、Ca2+、Fe3+)导致的膜降解和催化剂失活。然而,超纯水制备成本高且水资源消耗大,限制了PEM电解技术的规模化应用。开发适应非纯水的电解槽可降低预处理成本并延长系统寿命,但需解决阳离子占据质子传输位点、阴极碱性微环境引发沉淀等问题。


研究思路

1. 设计催化体系

关键问题:作者发现阳离子杂质会占据膜中的H+传输位点,导致阴极局部pH升高,同时引发以下问题(图1):

1.析氢反应(HER)动力学降低(2H2O + 2e → H2 + 2OH);

2.OH与Ca2+/Mg2+形成沉淀,毒化Pt/C催化剂;

3.Fe3+触发Fenton反应,产生活性氧(ROS)加速膜降解。


解决方案:在阴极引入Brønsted酸性氧化物(如MoO3−x),通过动态水解离和H+释放,构建局部强酸性微环境,抑制pH升高并保护膜和催化剂。


640 (4).png

图1. 阳离子杂质对PEM电解槽性能的影响


2. 关键实验证明

作者通过红外光谱和固体核磁共振证实MoO3−x具有强Brønsted酸性,其表面Mo-O-H基团在阴极电位下持续释放H+。原位拉曼光谱进一步揭示了电压驱动的水解离机制,阴极电位驱动MoO3−x表面水解离生成H+;旋转环盘电极(RRDE)测试证实MoO3−x表面局部pH可降至2(图2)。


640 (5).png

图2. MoO3−x的酸性表征及H+释放机制


3. 电解槽性能与稳定性测试

基于以上实验结果,作者将MoO3−x负载于Pt/C(Mo/Pt原子比1.02)设计合成了阴极电催化剂,并测试了其在PEM电解槽中的性能(图3、图4和图5):

局部pH调控:传统Pt/C阴极在含Na+/Ca2+的电解液中,局部pH升至10.4(图1d);而MoO3−x@Pt/C阴极将pH稳定在2.5–3.5(图3)。

性能对比:当水中分别含30 mM Na+、15 mM Ca2和10 mM Fe3+时,MoO3−x@Pt/C||IrO2电解槽的电压仅分别增加50、70和15 mV(1.0 A cm−2),接近超纯水条件下的性能(图3d);此外,在Fe3+存在的条件下,膜降解显著减轻(图4):F释放量显著降低,XPS显示C-F信号无损失。

长期稳定性:在自来水(含多种杂质)中稳定运行3,000小时,电压保持稳定(图5a)。 


640 (6).png

图3. MoO3−x@Pt/C电解槽的性能与局部pH调控


640 (7).png

图4. MoO3−x@Pt/C电解槽的性能与局部pH调控


4. 技术经济分析

最后,作者通过蒙特卡洛模拟表明该技术可降低氢气平准化成本(LCOH):

纯水场景:避免水净化系统故障损失,年节省1.7-7.9万美元(2,000 kg H2/天)。

非纯水场景:省去纯水制备成本,年节省4.2-32.1万美元(图5f)。


640 (8).png

图5. 电解槽在自来水中的稳定性及经济性分析


小结

本文通过Brønsted酸性氧化物调控阴极局部pH,解决了PEM电解槽在非纯水中的性能瓶颈,为绿色氢能的大规模低成本生产提供了新策略。


原文详情

Ruguang Wang, Yuting Yang, Jiaxin Guo, Qinhao Zhang, Fahe Cao, Yunjian Wang, Lili Han, Tao Ling. Cathode catalyst layers modified with Brønsted acid oxides to improve proton exchange membrane electrolysers for impure water splitting. Nat. Energy (2025).https://doi.org/10.1038/s41560-025-01787-9


艾思科蓝官网-版尾.jpg


会议官网

扫码关注艾思科蓝订阅号 回复“0”即可领取该资料

去登录