教授
傅景礼
  • 所属院校:
    浙江理工大学
  • 所属院系:
    理学院
  • 研究领域:
    分析力学;动力学与控制力学、物理学中的现代数学方法;机电耦合动力学;相对论性Bir
  • 职称:
    教授
  • 导师类型:
    --
  • 招生专业:
    测试计量技术及仪器、机械工程、数学
个人简介

个人简述:

一、基本介绍:

博士、浙江理工大学教授、博士生导师。1987年晋升讲师,1995年晋升副教授,2002年破格晋升教授。2001.8-2004.6上海大学上海应用数学和力学研究所一般力学与力学基础专业获工学博士学位;2003年在青岛大学获硕士生导师资格;2008年在湘潭大学获应用数学博士生导师资格;2009年在浙江理工大学获机械设计与理论博士生导师资格。数学物理研究所所长。

主持国家自然科学基金三项;主持完成省自然科学基金4项;获浙江省科学技术奖二等奖(第一名),获教育部自然科学奖二等奖(第二名), 获上海市科技进步二等奖(第二名),获河南省科技进步三等奖一项(第二名);获省级教学成果一等奖一项(第一名);发表研究论文百余篇,经检索被SCI收录论文80余篇,被EI收录论文60余篇,被SCI期刊他人引用论文700余次,已培养博士生2名,硕士生7名,在研博士生1名,在研硕士生7名。

二、学术兼职

1.浙江省2011年科学技术奖评审委员会委员,基础理论专家组组长;

2.湘潭大学兼职教授;湘潭大学博士生导师;

3.青岛大学硕士生导师;

4.Physics Letters A, Science China, Modern Physics Letters B, International Journal of Theorem Physics, Acta Mechanica Sinica, Chinese Physics, Chinese Physics Letters, 物理学报、数学物理学报、动力学与控制等期刊审稿专家。

三、主讲课程

《数学物理方法》、《分析力学》、《机电分析力学》、《Symmetries and Differential Equations》,《Symmetry and Integration Methods》、《李群李代数对约束力学系统的应用》、《理论力学》等。


科研工作:

一、获奖

1.浙江省科学技术奖二等奖,机电动力系统的对称性与积分方法研究,2010年,第一名;

2.教育部自然科学奖二等奖,有限和无限自由度系统的对称性和守恒量, 2010年,第二名;

3.上海市科技进步二等奖,力学系统的对称性和守恒量,2005年,第二名;

4. 河南省科技进步奖三等奖,机电耦合动力系统的对称性、稳定性及其应用。,2008年,第二名;

5. 河南省教学成果一等奖,旋转二次曲面成像在物理教学中的应用研究,2005年,第一名,

二、科研项目

1.国家自然科学基金项目(11272287),分数阶约束力学系统的基本框架和对称性理论研究(2013.1-2016.12),资助86万元,项目主持人;

2.国家自然科学基金项目(11072218),离散约束力学系统的对称性和守恒量研究(2011.1-2013.12),资助39万元,项目主持人;

3.国家自然科学基金项目(10672143),离散机电动系统的对称性和保结构算法(2007.01~2009.12),资助34万,项目主持人

4.河南省自然科学基金项目(0511022200),机电动力系统的对称性和数值计算方法(2005.1-2007.12),项目主持人

5.河南省自然科学基金项目(0311011400),机电动力系统的现代数学方法(2003.1-2005.12),项目主持人

6.河南省自然科学基金项目(984053100),相对论Birkhoff系统动力学研究(1998.1-2001.12), 项目主持人

7. 浙江省自然科学基金项目(Y6100337),第二类Mei对称性下动力学系统共形不变性与守恒量的研究(20111.1-2012.12),资助10万元,第2名

8.河南省自然科学基金项目(0211011800),约束力学系统的精确不变量和绝热不变量(2002.1-2003.12),排名2

9. 河南省自然科学基金项目(072300440220),机电耦合动力系统的对称性、稳定性及其应用(2007.1-2008.12), 排名2

10.河南省自然科学基金项目(998040080),Birkhoff系统的全局分析分岔与混沌(1999.1-2000.6),排名3

11.河南省自然科学基金项目,约束力学系统的对称性和全局分析,排名2

12.中国科学院科学与工程计算国家重点实验室资助项目,机电系统的辛算法和对称性分析(2005.1-2005.12),项目主持人

13.中国科学院科学与工程计算国家重点实验室资助项目,机电系统的对称性和保结构算法(2006.1-2006.12),项目主持人

14.中国科学院科学与工程计算国家重点实验室资助项目,离散机电动力系统的非Noether对称性和守恒量(2007.1-2007.12),项目主持人。

三、发表主要论文

1.Fu Jing-Li,Xie Feng-Ping and Guo Yong-Xin, Algebraic Structure and Poisson’s Integral Theory of f (R) Cosmology,International Journal of Theoretical Physics,2012,50(1):1968-1981

2. Fu Jing-Li, Zhao Wei-Jia and Chen Ben-Yong, Energy–work connection integration schemes for mechanico-electrical systemsin, Nonlinear Dynamics: 2012,70,(1): 755-765

3. Zhou Sha, Fu Hao& Fu Jing-Li, Symmetry theories of Hamiltonian systems with

fractional derivatives, ScienceChina: Physics, Mechanics & Astronomy, 2011, 54 ,(10): 1847- 1853

4. Fu Jing-Li, Chen Ben-Yong, Fu Hao, Zhao Gang-Ling, Liu RongWan, and Zhu. Zhi-Yan1, Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems, ScienceChina: Physics, Mechanics & Astronomy, 2011,54 (2): 288–295

5. Fang-Yu Hong, Yang Xiang, Jing-Li Fu and Zhi-Yan Zhu, All-electrical control of the Photon-Charge-Qubit interfaces for quantum networks, Journal of the Physical Society of Japan, 2012,81:104001-4

6. Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 (9): 1699–17063

7. Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698

8. Fu Jing-Li,Chen Li-Qun and Chen Ben-Yong, Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices, Science China, Physics. Mechanics & Astronomy, 2010, 53(3): 545-554

9.傅景礼,陈立群,陈本永,非规范格子离散机电耦合动力系统的Noether理论,中国科学G辑,2010,40(2):133-145

10. 傅景礼,陈立群,陈本永,非规范格子离散非保守系统的Noether理论,中国科学G辑,2009,39(9):1320-13293.

11. Fu Jing-Li, Fu Hao and Liu Rong-Wan, Hojman conserved quantities of discrete mechanico- electrical systems constructed by continuous symmetries, Physics Letters A, 2010, 374:1812-1818

12. Fu Jing-Li ,Fu Hao , Su Ning-Fen and Bai Guo-Liang, Damped Properties and Noether Symmetries of Damped Free Vibration, Pract. Periodical on Struct. Des. and Constr. 2010, 15(1): 50-53

13. Zhao Li, Fu Jing-Li and Chen Ben-Yong, Lie symmetries and conserved quantities for atwo-dimentional nonlinear diffusion equation of concentration, Chinese Physics B, 2010, 19(1):010301-010301-5

14. Fu Jing-Li,Chen Ben-Yong and Chen Li-Qun, Noether symmetries of discrete nonholono-mic dynamical systems, Physics Letters A, 2009.373:409-412

15. Fu Jing-Li and Chen Ben-Yong, Hojman conserved quantities and Lie symmetries of non-conservative systems, Modern Physics Letters B,2009,23(10):1315-1322

16. Fu Jing-Li,Nie Ning-Ming,Huang Jian-Fei,Jimé nez Salvador,Tang Yi-Fa,Vá zquez Luis and Zhao Wei-Jia, Noether conserved quantities and Lie point symmetries of difference Lagrange--Maxwell equations and lattices, Chinese Physics B, 2009 18(7):2634-2641

17. Li Ziyan and Fu Jingli(通讯作者), Euler–Lagrange equation from nonlocal-in-time kinetic energyof nonconservative system, Physics Letters A, 2009,374:106-109

18. Fu Jing-Li, Salnalor Jiménez and Tang Yi-Fa and Luis Vázquez, Construction of exact invariants of time-dependent linear nonholonomic dynamical systems, Physics Letters A, 2008,372: 1555-1561

19. Wang Xian-Jun and Fu Jing-Li(通讯作者), Energy-work connection integration scheme for nonholonomic Hamiltonian systems, Communication in Theoretical Physics, 2008,50(5): 1041-1046

20. Fu Jing-Li, Chen Ben-Yong and Xie Feng-Ping, Noether symmetries of discrete mechanico-electrical systems, Chinese Physics B, 2008,17(12): 4354-4360

21. Fu Jing-Li, Xu Shu-Shan and Weng Yu-Quan, A field method for integrating the equations of motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2008, 17(6):1939-1945

22. Fu Jing-Li, Zhao Wei-Jia and Weng Yu-Quan, Structure properties and Noether symmetries for super-long elastic slender rod, Chinese Physics B, 2008,17(7):2361-2365

23. Fu Jing-Li, Dai Gui-Dong, Salvador Jimsenez and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems, Chinese Physics, 2007,16: 570-577

24. Zhao Wei-Jia, Weng Yu-Quan and Fu Jing-Li(通讯作者),Lie symmetries and the conserved quantities for super-long elastic slender rod, Chinese Physics Letters, 2007,24 (10): 2773-2776

25. Fu Jing-Li, Chen Li-Qun, Chen Xiang-Wei, Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems Chinese Physics, 2006, 15(1): 8-12

26. Fu Jing-Li, Chen Li-Qun, Salnalor Jiménez and Tang Yi-Fa, Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems, Physics Letters A 2006, 358(1) : 5-10

27. Liu Cui-Mei, Wu Run-Heng and Fu Jing-Li(通讯作者), Lie symmetries algebra of one-dimensional nonconservative dynamical systems, Chinese Physics, 2007,16(9):2665-2670

28. Zheng Shi-Wang, Tang Yi-Fa and Fu Jing-Li(通讯作者), Non-Noether symmetries and Lutzky conserved quantities for nonholonimic neoconservative dynamical systems, Chinese Physics,2006, 15(2),243-248

29. Liu Hong-Ji, Fu Jing-Li(通讯作者) and Tang Yi-Fa, Algebraic structure and Poisson’s theory of mechanico-electrical systems, Chinese Physics, 2006, 15(8),1653-1661

30.Fu Jing-Li, Chen Li-Qun and Bai Jing-Hua, Localized Lie symmetries and conserved quantities for the finite-degree-of-freedom systems, Chinese Physics, 2005, 14, 6-11

31. Fu Jing-Li, Li-Qun Chen, Non-Noether symmetries and conserved quantities ofnonconser-vative dynamical shstems, Physics Letter A, 2003, 317 (3-4), 255-259

32. Fu Jing-Li, Li-Qun Chen, Form invariance, Noether symmetry and Lie symmetry of

Hamilton systems, Mechanics Research Communication 2004 31(1) 9-19

33. Fu Jing-Li, Li-Qun Chen, Perturbation of Symmetries of Rotational Relativistic Birkhoffian Systems and Its Inverse Problems, Physics Letters A 2004,324 (2/3)95-103

34. Fu Jing-Li,Chen Li-Qun,On Noether symmetries and form invariance of mechanico-electrical systems Physics Letters A 2004,331,138-152

35. Fu Jing-Li, Li-Qun Chen. Lie symmetries and non-Noether symmetries of Hamilton canonical systems, Chin. Phys.2004,13,1611-1614

36.Fu Jing-Li, Li-Qun Chen. Non Noether symmetries and conserved quantities of Lagrange mechanico-electrical systems, Chin. Phys. 2004, 13, 1784-1789

37. Fu Jing-Li, Chen Li-Qun, Luo-Yi, Luo Shao-Kai, Stabikity of the equilibrium manifold

of the relativistic Birkhoffian systems, Chinese Physics, 2003,12 (4),351-356

38. Fu Jing-Li, Chen Li-Qun, Bai Jing-Hua, Yang Xiao-Dong, Lie symmetries and conserved quantities of the controllable non-holonomic systems, Chinese physics, 2003,12 (7), 695-699

39.Fu Jing-Li, Li-Qun Chen,Velocity-dependent symmetries and conserved quantities of

nonholonomic dynamical systems, Chinese Physics 2004, 13 (3) 287-291

40. Jing-Li Fu, Li-Qun Chen,Feng-Ping Xie, Form invariance, Noether symmetries and Lie symmetries of nonconservative dynamical systems, Journal of Shanghai university, 2004,6(3),252-257(EI04488688944)

41. Fu Jing-Li, Li-Qun Chen and Xiang-Wei Chen, Momentum-dependent symmetries and non-Noether conserved quantities for nonconservative Hamilton systems, Multidiscipline Modeling in Mat and Str, 2006,2(2),213-220

42. Ke Xian-Xin, Gong Zhen-Bang and Fu Jing-Li, Lie symmetries and conserved quantities of a biped robot, Acta Mechanica Sinica Solida, 2004,17(2),183-188

43. Fu Jing-Li, Dai Gui-Dong, Salvaolor Jimenes and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems, Chinese Physics,2007,16(3),570-577

44. Liu Hong-Ji, Fu Jing-Li(通讯作者) and Tang Yi-Fa, A series of non-Noether conservative quantities and Mei symmetries of nonconservative systems,Chinese Physics,2007,16(3):599-604

45. Zheng Shi-Wang Fu Jing-Li(通讯作者), Shi Shen-Yang, Chen Li-Qun  Chen Xiang-Wei Generalized geometry theory on constrained rotating relativistic Birkhoffian systems,Journal of Shanghai University, 2007,11(2): 115-120

46. Jing-Li Fu, Hao Fu, Ning-Fen Su, and Guo-Liang Bai. Damped properties and Noether symmetries of damped free vibration, Pract. Periodical on Struct. Des. and Constr. 2010, 15, (1):. 50-53

47. Jing-Li Fu, Hao Fu, Rong-Wan Liu, Hojman conserved quantities of discrete mechanico– electrical systems constructed by continuous symmetries. Physics Letters A 2010, 374 (2010) 1812–1818(SCI 583SS)

48. Zhao Li, Fu Jing-Li, and Chen Ben-Yong, Lie symmetries and conserved quantities for a

two-dimentional nonlinear diffusion equation of concentration, Chin. Phys. B 2010 , 19 (1) : 010301- 010301-5

49. He Yu-Fang, Fu Jing-Li and Li Xiao-Wei. The symmetries of wave equations on new lattices, Chin. Phys. B 2010 , 19 (6):080301-6 EI: 20102513017629

50.Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1699–1706

51. Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698

52. Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and conserved quantities of Appell

systems under second-class Mei symmetry, Chin. Phys. B, 2010,19(9): 090304-090304-6

53. Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and Hojman conserved quantities

for holonomic systems with quasi-coordinates, Chin. Phys. B, 2010,19(9): 090303-090303-6

54. zhou Sha,Fu Jing-Li and Liu Yong-Song, Lagrange equations of nonholonomic systems with feactional derivatives, Chin. Phys. B, 2010.19(12):120301-5

55. He Yu-Fang, Liu Yong-Song and Fu Jing-Li, Reductions and conserved quantities for discrete compound KdV-Burgers equations, Chin. Phys. B, 2011.20(1):010202-7

56.Shi Shen-Yang and Fu Jing-Li, Lie symmetry and Mei conservation law of continuum system, Chin. Phys. B, 2011.20(1):021101-5

57. Luo Yi-Ping and Fu Jing-Li, Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry, Chin. Phys. B, 2011.20(1):021102-5

58. Li C.R., Lu N.P, Xua Q., Mei J, Dong W J, Fu J.L., Cao Z.X., Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution, Journal of Crystal Growth, 2011, 319: 88–95

59. Zhao Li, Fu Jing-Li and Chen Ben-Yong, A new type of conserved quantity of Mei symmetry for the motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2011, 20(4): 040201-1-040201-4

60, Xing-Zhong Wang, Jingli Fu and Chaorong Li,Noether symmetry and first integral of discrete nonconservative and nonholonimic Hamiltoinian system,Applied Mechanics and Materials,2012,117-119:167-173

61.ZhangShi-Hua,ChenBen-YongandFuJing-Li,HamiltonformalismandNoethersymmetryformechanico-electricalsystemswithfractionalderivatives,ChinesePhysicsB,2013,21(10):100202-1-100202-862WangXing-Zhong,FuHao,FuJing-Li,LiesymmetriesandconservedquantitiesofdiscretenonholonomicHamiltoniansystems,ChinesePhysicsB,2012,21(4):040201-663.ZhaoGang-Ling,ChenLi-Qun,FuJing-Li,Meisymmetriesandconservationlawsofdiscretenonholonomicdynamicalsystemswithregularandirregularlattices,ChinesePhysicsB,2013,22(3):030201-1—030201-764.CaiPing-Ping,FuJing-Li,GuoYong-Xin,Noethersymmetriesofthenonconservativeandnonholonomicsystemsontimescales,ScienceChina:Physics,Mechanics&Astronomy,2013,56(5):1017-102865.Fang-YuHong,HuiqinQian,Jing-LiFu,Zhi-YanZhu,andLi-zhenJiang.Strongcouplingbetweenatopologicalqubitandananomechanicalresonator,PhysicsReviewA,2013,87:032339-1—032339-566.HongFang-Yu,XiongShi-Jie,FuJing-Li,ZhuZhi-Yan.Efficientexcitationofasymmetriccollectiveatomicstatewithasingle-photonthroughdipoleblockade.Commun.Theor.Phys.,2013,59:365-36967.FuJing-Li,SongDuan,FuHao,HeYu-Fang,HongFang-Yu,SymmetriesandconservedquantitiesofdiscretewaveequationassociatedwiththeAblowitz-Ladik-Lattice-system,ChinesePhysicsB,2013,22(9):090201-1-090201-968.XiaLi-Li,ChenLi-Qun,FuJing-Li,WuJing-He,SymmetriesandvariationalcalculationofdiscdiscreteHamiltoniansystems,ChinesePhysicsB,2013,23(7):070201-7

69. 施沈阳, 傅景礼,陈立群, 离散Ladrange系统的Lie对称性,物理学报,2007,56(6)3060-3063(SCI)

70..郑世望,傅景礼(通讯作者),李显辉,机电系统的动量依赖对称性和非Noether守恒量,物理学报,2005,54(12)5511-5516

71. 傅景礼, 王新民,相对论Birkhoff系统的Lie对称性和守恒量,物理学报,2000,

(6),1023-1028

72. 傅景礼, 陈立群,罗绍凯,陈向炜,相对论Birkhoff系统动力学研究,物理学报,

2001, (12) ,2289-2295

73. 傅景礼, 陈立群,薛纭,罗绍凯,相对论Birkhoff系统的平衡稳定性,物理学报,

2002,51(12) , 2683-2689

74.傅景礼,陈立群,薛纭,转动相对论Birkhoff系统的平衡稳定性,物理学报 2003, 52(2), 256-260

75. 傅景礼,陈立群,约束Birkhoff系统的几何理论,力学学报,2002,(11)(ZK)

76. 傅景礼,陈立群,谢凤萍,相对论Birkhoff系统的对称性摄动和绝热不变量。物

理学报, 2003,52(11)2664-2670

去登录