ACM Transactions on Knowledge Discovery from Data
期刊ISSN: 1556-4681
E-ISSN: -
影响因子: 登录后查看数据
自引率: 8.9%
SCI期刊JCR分区
SCI期刊JCR分区等级:1区
按学科分区
COMPUTER SCIENCE, SOFTWARE ENGINEERING
Q1
COMPUTER SCIENCE, INFORMATION SYSTEMS
Q2
最新中科院SCI期刊分区(基础版)
大类学科
工程技术
3区
小类学科
计算机:信息系统
4区
计算机:软件工程
3区
Top期刊
综述期刊
最新中科院SCI期刊分区(升级版)
大类学科
计算机科学
3区
小类学科
计算机:软件工程
3区
计算机:信息系统
4区
Top期刊
综述期刊
期刊简介
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
出版信息
出版商
Association for Computing Machinery (ACM)
涉及的研究方向
COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
年文章数
151
出版国家或地区
UNITED STATES
是否OA
Cite Score相关
Cite Score SJR SNIP 排名
6 1.566 2.008
学科
大类学科:Computer Science
小类学科:General Computer Science
分区
Q1
SCI期刊投稿推荐
JCR分区相关期刊
中科院分区相关期刊
去登录